Be-Hg (Beryllium-Mercury)

C. Guminski* and H. Okamoto

No phase diagram was proposed in the evaluation of the Be-Hg system by [1987Oka]. Recently, [2004Gum] sketched a provisional Be-Hg phase diagram shown in Fig. 1 (the allotropic transformation of Be has been added). Theoretical predictions of [1983Nie] suggested a pronounced tendency to immiscibility of Be and Hg. This is confirmed by the very limited solubility of Be in liquid Hg $\{1.3 \times 10^{-4} \text{ at.\%}\}$ at 371 °C [1964Wan], <1 × 10⁻⁵ at.% at 25 °C [1986Jed], \geq 7 × 10⁻⁶ at.% Be at 25 °C [1991Kli] and an overestimated value of 0.05 at.% Be at room temperature [1963Zuc]}, as well as in solid Hg ($<10^{-4}$ at.% Be at -40 °C [1971Ale]). Although insufficiently documented by experiments, a possible formation of BeHg₂ reported earlier [1987Oka] seems to be possible if a partial Gibbs free energy of Be (about -80 kJ/mol Be) is taken. This value for a dilute amalgam was estimated from the difference between the normal Be(II)/Be and polarographic half wave potential of Be(II) reduction on an Hg electrode [1975Nug]; the electrode process should be reversible and without subsequent reactions, but this was not exhaustively tested. Be undergoes a fair corrosion in Hg like Ti and Zr, which form stable intermetallics with Hg [1965Nej].

*Department of Chemistry, University of Warsaw, Poland.

References

- 1963Zuc: D. Zucker, Preparation of Be Amalgam, U.S. Atom. Ener. Comm. Rep. ORNL-3488, 1963, p 28
- **1964Wan:** J.Y.N. Wang, Ti and Ti Alloys in Hg, *Nucl. Sci. Engin.*, Vol 18, 1964, p 18-30
- **1965Nej:** J.F. Nejedlik and E.J. Vargo, Material Resistance to Hg Corrosion, *Electrochem. Technol.*, Vol 3, 1965, p 250-258
- 1971Ale: B.N. Aleksandrov and O.I. Lomonos, Solubility of Metals in Solid Hg, *Russ. J. Phys. Chem.*, Vol 45, 1971, p 1703-1705
- **1975Nug:** L.J. Nugent, Standard Electrode Potentials and Enthalpies of Formation of Some Lanthanide and Actinide Aquo-ions, *J. Inorg. Nucl. Chem.*, Vol 37, 1975, p 1767-1770
- **1983Nie:** A.K. Niessen, F.R. deBoer, P.F. deChatel, W.C.M. Mattens, R. Boom, and A.R. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys, *CALPHAD*, Vol 7, 1983, p 51-70
- **1986Jed:** T. Jedral, Department of Chemistry, University of Warsaw, Poland, private communication, 1986
- 1987Oka: H. Okamoto and L.E. Tanner, The Be-Hg (Bellyrium-Mercury) System, *Phase Diagrams of Binary Beryllium Alloys*, ASM International, 1987, p 108
- **1991Kli:** G.V. Klimachev, N.G. Gubina, T.I. Khakhanina, and Yu.A. Karbainov, Estimation Method of Kinetic Parameters of Amalgam Electrodissolution Process by Stripping Voltammetry, *Zh. Anal. Khim.*, Vol 46, 1991, p 2197-2203
- **2004Gum:** C. Gumiński, Contribution of Electrochemistry to the Knowledge on Structure and Properties of Amalgams, *Polish J. Chem.*, Vol 78, 2004, p 1733-1751

Fig. 1 Be-Hg phase diagram

Journal of Phase Equilibria and Diffusion Vol. 26 No. 6 2005